6 research outputs found

    Great expectations: A predictive processing account of automobile driving

    Get PDF
    Predictive processing has been proposed as a unifying framework for understanding brain function, suggesting that cognition and behaviour can be fundamentally understood based on the single principle of prediction error minimisation. According to predictive processing, the brain is a statistical organ that continuously attempts get a grip on states in the world by predicting how these states cause sensory input and minimising the deviations between the predicted and actual input. While these ideas have had a strong influence in neuroscience and cognitive science, they have so far not been adopted in applied human factors research. The present paper represents a first attempt to do so, exploring how predictive processing concepts can be used to understand automobile driving. It is shown how a framework based on predictive processing may provide a novel perspective on a range of driving phenomena and offer a unifying framework for traditionally disparate human factors models

    Computational modeling of driver pre-crash brake response, with and without off-road glances: Parameterization using real-world crashes and near-crashes

    Get PDF
    When faced with an imminent collision threat, human vehicle drivers respond with braking in a manner which is stereotypical, yet modulated in complex ways by many factors, including the specific traffic situation and past driver eye movements. A computational model capturing these phenomena would have high applied value, for example in virtual vehicle safety testing methods, but existing models are either simplistic or not sufficiently validated. This paper extends an existing quantitative driver model for initiation and modulation of pre-crash brake response, to handle off-road glance behavior. The resulting models are fitted to time-series data from real-world naturalistic rear-end crashes and near-crashes. A stringent parameterization and model selection procedure is presented, based on particle swarm optimization and maximum likelihood estimation. A major contribution of this paper is the resulting first-ever fit of a computational model of human braking to real near-crash and crash behavior data. The model selection results also permit novel conclusions regarding behavior and accident causation: Firstly, the results indicate that drivers have partial visual looming perception during off-road glances; that is, evidence for braking is collected, albeit at a slower pace, while the driver is looking away from the forward roadway. Secondly, the results suggest that an important causation factor in crashes without off-road glances may be a reduced responsiveness to visual looming, possibly associated with cognitive driver state (e.g., drowsiness or erroneous driver expectations). It is also demonstrated that a model parameterized on less-critical data, such as near-crashes, may also accurately reproduce driver behavior in highly critical situations, such as crashes
    corecore